
WHITE PAPER

MARCH 2011

Smartphone
Enterprise
Application
Integration

 Rhomobile - Mobilize Your Enterprise

Overview

Smartphone app usage is exploding. This trend began with consumers adopt-

ing the iPhone and finally accepting, running and installing apps by the mil-

lions. It has continued into the enterprise with businesses using these recent,

more powerful devices to make their workers more productive. One of the most

interesting things about this trend, is that it is a changed paradigm in applica-

tion development. For the last fifteen years application development has been

mostly about centralized computing through web apps. By contrast,

smartphone apps are dominated by native apps running locally on the device

itself, and by utilizing device capabilities. This is truly “computing at the edge,”

utilizing the incredible burgeoning power of the modern smartphone. Because

of this, many of the former best practices for enterprise applications need a

refresh. There are new rules for optimal smartphone app development.

The topic of this white paper is one subarea of those overall best practices:

how to most effectively integrate native smartphone apps with existing enter-

prise applications. This white paper also discusses how Rhomobile’s Rho-

Sync Application Integration Server, and other components provided by

Rhomobile, provide a powerful tool for enterprise application integration.

Introduction

In the enterprise scenario there are many common tasks that need to be per-

formed to build an informational mobile app that integrates with an existing en-

terprise backend app. This integration is proving to make up the majority of the

effort in building these apps, and in many cases, the majority of an enterprise’s

entire IT efforts. This white paper will describe in detail where that effort is, and

some best practices in reducing it and overall time to deployment.

When writing apps for modern smartphones to connect to enterprise backend

applications, there are several areas of effort in building the full app. You need

to connect to the backend application, generally through some web service

protocol. You need to retrieve the payload data from that backend. The data

needs to be parsed into a consumable form. Generally, the data needs to be

stored locally on the device in some form of database. If the data is stored lo-

cally, then some form of ongoing database management in the face of changes

needs to take place. In some scenarios the data will need to be encrypted on

the device. Finally, there will generally need to be some way of making sure

that the data and apps can be remotely wiped if the device is lost, stolen or the

employee is terminated.

In the cases where synchronized offline data is required (which is the majority

of the time for an enterprise app) many of these steps can be eliminated and

the overall effort will be simplified. But, using a sync server also raises some

additional steps to be performed such as: hosting the sync server, tying it in

with the overall enterprise authentication directory, and writing some form of

sync “source adapter” to interact with the backend application.

In talking with smartphone app developers we have found that all of these

steps constitute more than half of every enterprise smartphone app’s code and

overall effort. In the rest of this document we will discuss each of these steps

individually.

For more information on op-

timal smartphone develop-

ment please see the Rhomo-

bile White Paper: “Best

Practices in Enterprise

Smartphone Development”

Connection

You will almost always want to connect via http or securely via https. You will

need to think about how to handle authentication in a secure way. Generally,

you will want to use Basic authentication challenges from smartphone devices

versus some more elaborate protocol such as NTLM. On devices such as

BlackBerry, you may need to explicitly control which network (Wifi or 4G carrier

network for example) is used as the transport.

You should try to execute some form of asynchronous connection to keep the

smartphone user interface responsive. Many desktop and web apps can get

away with synchronous connections where you wait for the response. On a

mobile device you will want to keep the user interface responsive while you

wait for the connection and information retrieval. So some method of connect-

ing asynchronously with a callback on the return should be performed.

Data Retrieval

The first step in integrating to the enterprise backend application is to decide

how to expose that backend. The common ways of doing this now are REST

and SOAP web services. You may have inherited older methods such as

DCOM, Corba or XML-RPC gateways. The second step is to determine the

payload format. Common approaches include XML or JSON payloads. JSON

is much smaller and easier to process.

If you are communicating directly from a device, we recommend a JSON pay-

load exposed via a REST interface. When absolutely necessary you can con-

nect directly to a SOAP service. However, you would want to avoid this when

using older BlackBerry devices, and you should be sure that the payload is not

too large if you are doing this from SOAP.

When using a sync server, it may be OK to use some legacy method as the

sync server can act as a proxying mechanism to make data easily retrievable

by the device.

Parsing Responses

Once you retrieve the data, you will then need to extract the data that your app

needs from the payload. The options for doing this are most often either JSON

parsing or XML parsing. If you are handling a large XML payload you will want

to consider using either a stream or pull parser versus using the XML Docu-

ment Object Model (DOM) to retrieve the data.

If you have a large amount of data (greater than 10MB) you will want to consid-

er using some more efficient method than a text stream to get the data to the

device. You could create some archived compressed format and deliver that in

bulk to the client device (a technique sometimes referred to as “bulk sync”).

Populating the Database

Once you have the data, generally you will want to provide some way of popu-

lating a database or local cache. Users should not have to wait each time they

start their app for their data to be retrieved from the server. Generally this

means taking the parsed data and creating records in a database. Also, in or-

der to have users be comfortable creating or changing data for an enterprise

application, you will need to give them a way to store their changes locally be-

fore it is applied. This requires managing the local database. It also generally

requires some approach to data synchronization, which we will discuss shortly.

Secure Storage

In some cases involving local data, you will want to encrypt that data before

storage. This could be because of regulatory standards such as HIPAA, or the

data could contain sensitive information such as personal financial information

or confidential trade secrets. Because there is a chance of the device being

stolen or lost, it is important to securely encrypt such sensitive information.

However, be careful when applying this technique as encryption tends to be

slow especially on older BlackBerry or Windows Mobile devices. Use it where

necessary and nowhere else.

App and Data Deprovisioning

In the cases where sensitive data is on the device, (whether or not the data is

encrypted) you will want to have a way to deprovision apps and data if the de-

vice is lost, or an employee is terminated. The app and data management

capability should have the ability to utilize the user list from the enterprise di-

rectory. There are many mobile app and device management solutions from

vendors such as Sybase, Good Technology, Mobile Iron and Rhomobile. You

should strongly consider having one of these solutions in place as part of your

general smartphone app planning, especially when considering synchronized

data (highly recommended as described below).

Rhomobile is the only cross

platform mobile framework

that is Enterprise Security

Compliant. Check out our

White Paper “Security in the

Mobile Enterprise” to learn

how your mobile strategy is

secured from end-to-end

with data encryption, remote

device wipe, and secure au-

thentication

Data Synchronization

As mentioned above, in order for end users to utilize your app in enterprise ap-

plication usage scenarios, you will need to provide some way for users to store

their changes locally, whether or not they are connected. This is important for

several reasons. First, the most obvious reason is so that users can have their

data and do their work (such as creating and editing information) when they

are offline. A more critical reason for offline data synchronization is so that us-

ers know that their changes are made reliably, once and only once. Users send

and receive email with rich client apps on their mobile devices – apps that

store data locally and sync the email in the background (versus using a mobile

web browser). They have the same expectations for their enterprise apps. Fi-

nally, having the data available locally creates a faster user experience – the

data is always available for them immediately on startup.

A side benefit of using data synchronization is that it simplifies the app integra-

tion scenario described above. Instead of doing all the work to connect, re-

trieve, parse and store the data, a good synchronization server and client app

framework will perform all of that work for you. The only task for the app devel-

oper is to write the code for the sync server to connect to the backend applica-

tion. That work is typically called a “source adapter”. The app developer needs

to write code to enable the server to retrieve or query information. If he wants

bidirectional data he will need to write code to create, update and delete infor-

mation as well. This is typically much less code than performing all of the con-

nection, retrieval, extraction and storage from the device. And, usually, the

sync server has a richer set of libraries and tools available to make those

backend connections. The server can usually handle whatever format the

backend application exposes, versus requiring a new web service to be ex-

posed.

You should ensure that whatever server you use for synchronization supports

“push sync”. This means that changes made to the backend application get

immediately sent to the devices that need them. This avoids the device having

to “poll” occasionally for changes. Polling results in mobile device battery drain

and some level of staleness of data for the user. Note that your backend appli-

cation must have some kind of notification mechanism exposed. Also, there

must be some way of performing a push to the device to make this work. It is

unusual that “homegrown” approaches to sync do push.

How Rhomobile Can Help
So the major tasks in writing mobile apps to integrate with backend appli-

cations are: connecting to backend apps, retrieving the data, parsing re-

sponses, populating the local database, secure storage, app and data

deprovisioning, and data synchronization. In discussions with

smartphone app developers writing apps in Objective C or Java, or using

frameworks like Rhodes or PhoneGap, we usually hear that these tasks

involve the majority of the development effort and code size.

The rest of this white paper describes how the RhoSync Application

Integration Server, and other components provided by Rhomobile,

helps with each of these tasks, drastically reducing the effort involved in

mobilizing an enterprise application.

RhoSync automates most of this process by allowing the developer to

just provide a “source adapter” for each model. The RhoSync server then

does all of the work to connect to the backend application, retrieve the

data, parse the response, and populate a server cache (specifically a

very efficient Redis database) with the information. The RhoSync server

then monitors all of the smartphone devices that connect to it and effi-

ciently sends them just changes to the information that they need. The

RhoSync server can be used whether or not the smartphone app was

written with the Rhodes framework. Rhomobile products ship with Objec-

tive C RhoSync client. A JavaScript RhoSync client is under develop-

ment.

Rhomobile Architecture

Writing a RhoSync Source Adapter

Note that in most cases a “source adapter” must still be written to connect to

the backend application. Specifically, this means writing “query”, “create”,

“update” and “delete” methods to interact with the backend system. The source

adapter query method returns data in a standard “hash of hashes” result and

the RhoSync server does the rest of the work to get all of the data down to the

device’s database. The create, update, and delete methods which you write

can expect object attribute and value information to be provided to it by the

RhoSync server as a result of whatever the client app has done to create or

update record information. For example, the query method might connect to

the backend application’s REST interface, retrieve the data as a JSON pay-

load, and then put the data into a standard @result "hash of hashes" variable.

This saves huge amounts of code versus the typical "direct connect" way of

handling data feeds. The code can be as simple as:

def query

items=JSON.parse(open(“http://yourcompany.com/

crm/accounts.json”).read)

@result={}

items.each do |item|

@result[item["id"]]=item

end

end

Assuming an app that might just retrieve information, those five lines of code

replace hundreds of lines of Objective C or Java code of an app that might

connect directly. And of course, you get the benefit of automatically synchro-

nized offline data in the process.

Bulk Sync

With the creation of a source adapter, RhoSync handles the connection and

retrieval of data, parsing the response and populating the local database. Note

that RhoSync also handles performing large database delivery through its “bulk

sync” feature. If bulk sync is turned on the RhoSync server will create a SQLite

database on the server and send it down to all devices compressed. This is

very helpful for models (business objects) with large amounts of data such as

product catalogs or customer account lists.

Rhodes Automatic Encryption

For sensitive data (such as patient information in a medical information system

or personal financial information in a banking system), the enterprise will often

want to have the data be stored encrypted on the device. If the smartphone

app is written with Rhodes and the “secure app” option is turned on, then the

data will be populated in encrypted form into the database. No code to perform

encryption needs to be done in the smartphone app.

Automated Deprovisioning

Another concern when integrating smartphone apps with critical enterprise sys-

tems is what happens if a device is lost or stolen or an employee is terminated.

RhoGallery allows apps and data to be deprovisioned whenever the IT admin-

istrator chooses. RhoGallery is an app management feature on the RhoHub

hosted development site that also provides a client app that can be used to

control app execution. RhoGallery integrates with the enterprise directory

(such as LDAP) to get the list of acceptable users and determine if users are

still valid.

Synchronization

Primarily, this paper has described how RhoSync eases the app integration

process versus writing code directly from the device to integrate with

backends. But of course, RhoSync also provides for synchronized offline data.

This means that users can fully use their apps whether or not they are connect-

ed to the Internet from their device at a given time. It also means a higher per-

ceived level of performance for the user. The data is always present on the de-

vice. The user does not have to wait for information to be retrieved from the

backend.

Note that writing an app that just retrieves information and stores it on the de-

vice is not synchronized offline data. One reason is the lack of “push data”; da-

ta must be retrieved by explicit request or action by the user. With RhoSync

data can be pushed to the device realtime (it is unusual to unheard of for

“manually written direct from device to backend application sync” to do push

data). Another reason is that without a server like RhoSync to keep track of the

“master list of data”, the device cannot receive only the changes.

“No Code” Integration for Ruby on Rails Developers

If you are writing your backend application in Ruby on Rails we will soon be

providing a Rails plugin that literally removes all of the code necessary to syn-

chronize the data to the smartphone app on the device. In other words, a

source adapter is no longer necessary. By including the “RhoSync Rails plugin”

in your Rails app, your Rails app will push data through RhoSync directly to the

device. Data associated with all models (or selected models) of your Rails app

is replicated efficiently down to the device. No source adapter needs to be pro-

vided at all. Note that for most cases a RhoSync source adapter still needs to

be written, but for Rails developers there is a unique opportunity to completely

eliminate code for app integration.

RhoGallery is the first host-

ed mobile app manage-

ment solution. RhoGallery

allows companies to easily

manage and provision apps

for all of their employees re-

gardless of device type. Visit

www.RhoHub.com to learn

more.

http://www.google.com/url?q=http%3A%2F%2Frhohub.com%2F&sa=D&sntz=1&usg=AFQjCNGZxUkzuzzmaU5z1_EgjabVdSZ4ZQ

Summary

If you choose to use RhoSync it should alleviate most of the effort described in

this paper. It automates much of the repetitive and laborious process involved

in integrating with backend data feeds. In some cases RhoSync can remove

literally all of the code required to integrate with a backend app. Use of Rhodes

to write your app makes encryption of data automatic where appropriate. Us-

ing RhoGallery to manage your apps handles the app deprovisioning and man-

agement issues with enterprise apps and data.

Regardless of whether or not you use Rhomobile products, if you are consider-

ing building an enterprise app for modern smartphones, we would encourage

you to look at each of these steps to performing integration with your backend

enterprise application. Thinking carefully through each of these issues is likely

to accelerate your development efforts and result in a more performant, main-

tainable, and secure solution.

Rhomobile

Mobilize Your Enterprise

About Rhomobile

Rhomobile’s free and open source mobile application frame-

work, Rhodes, lets you quickly build native mobile applications for all

smartphones: iPhone, BlackBerry, Windows Mobile, Symbian and An-

droid. These are true native device applications (not mobile web

apps) which work with synchronized local data and take advantage

of device capabilities such as GPS, PIM contacts, camera, native map-

ping, push, alerts and calendar. Rhodes invented the smartphone

app framework (including that term) two years ago and has had over

50,000 open source downloads since then. Rhodes is the only

smartphone framework with support for all smartphones, a Model

View Controller pattern, and, most importantly, support for synchro-

nized offline data. Because of these features, which are all critical for

enterprise needs, several large Fortune 500 companies have stand-

ardized on Rhodes for mobile development.

Rhomobile, Inc.

3031 Tisch Way Ste. 704

San Jose, CA 95128

877.RHO.0334

408.572.8076

www.rhomobile.com

www.rhohub.com

